Emerging Fields Initiative
FAU offers perfect conditions for stimulating innovative research projects, which often emerge at the interface between several disciplines and span different fields of research. Emerging projects – which can involve an element of risk – are an important catalyst for progress in science, research and teaching. Despite their great potential in terms of future development and success, regular funding is not always an option for these projects, at least not in their early stages. FAU launched its Emerging Fields Initiative (EFI) to support emerging projects in 2010.
EFI aims to promote outstanding, preferably interdisciplinary research projects at an early stage and in a flexible and non-bureaucratic way. By applying for EFI funding, renowned FAU researchers can put visionary ideas into practice, allowing them to react more effectively to upcoming research challenges. EFI strengthens FAU’s reputation as a top research university and contributes to establishing unique research profiles, increasing FAU’s attractiveness as an employer for excellent researchers both from Germany and from abroad and developing FAU’s strategic alliances with key partners.
Current Emerging Fields Projects at the Faculty of Sciences
The goal of ADVENDO-LIFE at the interface between optical technology development and application in life sciences and medicine is the realization of a novel endoscopy-technology. Using laser-based multiphoton excitation of marker molecules, this technology aims to detect tumours and inflammatory processes in tissues already at the earliest possible time point and at the cellular level. As a second goal, multiphoton image data from diseased tissues will be systematically analyzed and implemented into a database describing the “ultrastructure of organ disease”.
Further information:
Advanced Optical Laser Technologies for Life Sciences and personalized Medicine (ADVENDO-LIFE)
Breast cancer is the most common form of cancer that causes mortality in women. The extraordinary complexity of the corresponding tumour forms is considered to be the main reason why comparatively little is known at present about the development of breast cancer. This means that the currently available treatment methods lack predictive accuracy and options for verifying success at an early stage. Although the introduction of more effective medical techniques such as genome analysis and immunotherapies has improved prognoses significantly, there is still no targeted method of treating breast cancer successfully that is associated with few undesirable effects.
Participating in the Emerging Fields project entitled BIG-THERA is a multi-disciplinary team of internationally recognised researchers at FAU and Universitätsklinikum Erlangen. The aim is to jointly develop new strategies with different approaches to improve the diagnosis, prognosis and treatment of breast cancer. The team has outstanding expertise at its disposal in the fields of clinical and preclinical breast cancer research, immunology, genetics, imaging, nanomedicine, ethics, theoretical physics, pattern recognition and Big Data management.
CYDER is an international interdisciplinary consortium of cell cycle experts, which aims at a better understanding of how cell cycle activation results in processes as diverse as cancer, regeneration and chronic organ failure. We pay particular attention to the discovery of novel mechanisms and unappreciated inter-cell type commonalities governing cell cycle exit and terminal differentiation. Ultimately, through these efforts, CYDER aims to generate an integrative view on cell cycle control and thus the foundation for the development of therapies for cell cycle-related diseases and the development of regenerative therapies.
Further information:
Science and literature represent two diametrically opposed ways of viewing the world. In combination they could develop a productive potential. ELINAS aims at creating an interdisciplinary infrastructure for research, dedicated to the reciprocal transfer of knowledge between physics and literature. The project studies the importance of language and metaphors in physical research as well as the discursive and narrative modulations of scientific theories in literary texts.
Further information:
Endoscopic molecular imaging represents a novel diagnostic procedure that enables us to identify mucosal lesions at an earlier stage and predict response to specific therapeutic strategies in different diseases.
Further information:
Up and coming new applications in biology, nano-technology and medicine make it necessary to find ways to connect objects and machines in dimensions that can be measured in nanometres and micrometres. The standard electromagnetic approaches for designing the corresponding communication systems are unsuitable in connection with magnitudes of this order. Communication between nano- and micro-objects such as bacteria and other cells, however, is widespread in the natural world. Signal molecules often function as information carriers in this regard, thus providing the basis of a physiological molecular communication system. The project concentrates the expertise available at FAU in the fields of electrotechnology, biology, materials science, mathematics and nano-medicine to design and implement synthetic molecular communication systems on the basis of natural mechanisms and processes.
The process of singlet fission opens a way to generate two excited electrons from one photon and to increase the efficiency of solar cells. The project aims at the fundamental understanding of the physical process leading to a knowledge-based design of novel materials for solar cells.
Further information:
Singlet fission in novel organic materials – an approach towards highly-efficient solar cells
A successful transformation of our energy system towards a smart energy system crucially depends on adequate investment incentives and the attractiveness of the business models of involved stakeholders. The aim of the research project “Sustainable Business Models in Energy Markets” is to develop new and urgently needed insight into the interaction between business models and regulation while taking into account the technological framework, and to allow a more informed discussion and advice regarding political and regulatory frameworks to ensure a successful transition towards a smart energy system.
Further information:
The initiative “Synthetic Biology” aims at establishing an interdisciplinary research platform between the fields of Biology, Informatics, Mathematics, Material Science and Physics to understand biological phenomena at the nanometer scale, to explore rational metabolic engineering of living cells, and to create bio-inspired nano-devices. Such studies of synthetic systems will shed light on the workings of complex natural biological systems.
Further information:
Past projects
Further information:
The research team of the EFI project ‘Medicinal Redox Inorganic Chemistry’ examines redox-active metal complexes and hydrogen sulfide (H2S), both capable of inactivating or modifying ROS/RNS. Here, the research focus is two-fold: the metal complexes and hydrogen sulfide will be studied (a) as pharmacological tools for analysing the function of ROS/RNS in (patho)physiological processes and (b) as agents for the regulation of the intracellular redox status and immune responses, as well as for the treatment of disease states related to immunodeficiency, inflammation/infection and neuropathology.
This project systematically explores the interplay between nutrition and neurofunction.